MEFM For Exact Solutions Of The (3+1) Dimensional KZK Equation and (3+1) Dimensional JM Equation
نویسندگان
چکیده
In this study, we have applied the modified exp -expansion function method (MEFM) to obtain exact travelling wave solutions for (3+1) dimensional Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation and (3+1)-dimensional Jimbo-Miwa (JM) equation. Dark soliton solution, dark-bright hyperbolic solution trigonometric of KZK JM been found by using method. After that, scratched 2D 3D graphs all obtained in study Wolfram Mathematica 9. Thus, graphical simulations openly show force
منابع مشابه
Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملInvestigation of analytical and numerical solutions for one-dimensional independent-oftime Schrödinger Equation
In this paper, the numerical solution methods of one- particale, one – dimensional time- independentSchrodinger equation are presented that allows one to obtain accurate bound state eigen values andeigen functions for an arbitrary potential energy function V(x). These methods included the FEM(Finite Element Method), Cooly, Numerov and others. Here we considered the Numerov method inmore details...
متن کاملMulti-soliton of the (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff equation and KdV equation
A direct rational exponential scheme is offered to construct exact multi-soliton solutions of nonlinear partial differential equation. We have considered the Calogero–Bogoyavlenskii–Schiff equation and KdV equation as two concrete examples to show efficiency of the method. As a result, one wave, two wave and three wave soliton solutions are obtained. Corresponding potential energy of the solito...
متن کاملExact Solutions of the Generalized Kuramoto-Sivashinsky Equation
In this paper we obtain exact solutions of the generalized Kuramoto-Sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems. The methods used to determine the exact solutions of the underlying equation are the Lie group analysis and the simplest equation method. The solutions obtained are then plotted.
متن کاملsome new exact traveling wave solutions one dimensional modified complex ginzburg- landau equation
in this paper, we obtain exact solutions involving parameters of some nonlinear pdes in mathmatical physics; namely the one-dimensional modified complex ginzburg-landau equation by using the $ (g^{'}/g) $ expansion method, homogeneous balance method, extended f-expansion method. by using homogeneous balance principle and the extended f-expansion, more periodic wave solutions expres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fen ve mühendislik bilimleri dergisi
سال: 2021
ISSN: ['2147-5296', '2149-3367']
DOI: https://doi.org/10.35414/akufemubid.855854